Hybrid Bio-Inspired Clustering Algorithm for Energy Efficient Wireless Sensor Networks
Authors
Abstract:
In order to achieve the sensing, communication and processing tasks of Wireless Sensor Networks, an energy-efficient routing protocol is required to manage the dissipated energy of the network and to minimalize the traffic and the overhead during the data transmission stages. Clustering is the most common technique to balance energy consumption amongst all sensor nodes throughout the network. In this paper, a multi-objective bio-inspired algorithm based on the Firefly and the Shuffled frog-leaping algorithms is presented as a clustering-based routing protocol for Wireless Sensor Networks. The multi-objective fitness function of the proposed algorithm has been performed on different criteria such as residual energy of nodes, inter-cluster distances, cluster head distances to the sink and overlaps of clusters, to select the proper cluster heads at each round. The parameters of the proposed approach in the clustering phase can be adaptively tuned to achieve the best performance based on the network requirements. Simulation outcomes have displayed average lifetime improvements of up to 33.95%, 32.62%, 12.1%, 13.85% compared with LEACH, ERA, SIF and FSFLA respectively, in different network scenarios.
similar resources
A bio-inspired distributed clustering algorithm for wireless sensor networks
Wireless sensor networks (WSNs) have emerged in strategic applications such as target detection, localization, and tracking in battlefields, where the large-scale nature renders centralized control prohibitive. In addition, the finite batteries in sensor nodes demand energy-aware network control. In this paper, we propose an energy-efficient topology management model that allows clustered nodes...
full textAn Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks
Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...
full textAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
full textBIO Inspired Clustering and Routing for Wireless Sensor Networks
A quality literature survey was carried out in the area of Wireless Sensor Network and it was observed that leach protocol which has been proposed in the literature phase continued some problem, i.e. cluster construction and cluster head selection. PEGASIS overcome shortcomings of LEACH but PEGASIS still lack in outperforms the other two protocols in terms of system lifetime and quality of netw...
full textAn Energy Efficient Clustering Algorithm for Wireless Sensor Networks (EECA)
........................................................................................................ iii ÖZ ......................................................................................................................... iv DEDICATION ...................................................................................................... v ACKNOWLEDGMENT ................................
full textAn Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks
A wireless network consisting of a large number of small sensors with low-power transceivers can be an effective tool for gathering data in a variety of environments. The data collected by each sensor is communicated through the network to a single processing center that uses all reported data to determine characteristics of the environment or detect an event. The communication or message passi...
full textMy Resources
Journal title
volume 11 issue 1
pages 76- 101
publication date 2019-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023